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Introducticn

The usual method of testing the response 'of an accelerometer is to orient the
instrument so as to pick up varying components of the earth's gravitational field
.along the instrument's sensitive axis. This method is limited because & maximum
of only one gravity unit of acceleration is available and also because the component
of acceleration normal to the sensitive axis cannot be varied independently.
‘However, with present techniques the precision obtainable far surpasses other
methods sucihh as the centrifuge, so that it is of interest to examine the above
mentioned limitations in more detail. This memo ies principally concerned with the
consequences of the second limitaticn, narely, the interdependence of the accelera-
tions parallel and normal to the sersitive axis.

The problem will be attacked by attexmpting to utilize the results of the one
gravity test described above to determine the coefficients of a power series repre-
sentation of the accelerometer perfcrmance. This representation is quite useful in
system application of acdcelerometers and is appealing because the leading cogqfficients
have a clear physical significance. It will be shown, however, that in general, this
representation cannot be uniquely establisned cn the basis of tests in a constant
gravitational field alone.

The Power Serles Repréaentation

Suppose the responsd of an accelerometer is to be represented by

i+)=n
e SETT Q)

1y =0

where a_ and a_ are the components of input acceleration along orthogonal x and y
axes ri§ed in Xhe accelerometer case and ¢,, are constant coefficlients independent
-of a, a_and time, n wvill be called l:e &égree of the series., This analysis is
two-8imefsional and thus is applicable only when the total acceleration lies in the
'x-y plane. FHowvever, it may also be applicable to physical three-dimensional cases

in vhich the accelerometer is symmetric atout one axis and can therefore be described
in terms of Jjust two inputs, namely the components of acceleration parallel and
perpendicular to the axis of symmetry. The x-axis is termed the "sensitive axis”

and the y-axis the "cross axis".

In an a~tual accelerometer, there will be uncertuinties associnted with each
coefficient c¢,, due %0 measurement {naccuracies and variastions witn time, temperature
and other envivonmentel conditions {exclusive of steady acceleraticns). The ¢y 's
are gpecifically defined toc be independent or input accelerations, inasmuch as Any
such variation is already accounted for by the coefficients of higher degree terms.
The analysis c¢f the errors in the coefficients 1s not explicitly considered in this
mexo,

The power series is supposed Lo slve a £33 reprecentaticn over the entire

dymamic roance 2F the inctirument and thue moy cacrifice arruracy at one zoint (e.g.,
zero) 4o gain in accuracy over the rest of the range. Tnhus, we will not specific-

ally consider effects peculiar to the zero point, such 45 threshold values and null
shifts. Also, the assumed independence of time implicitly rules cut consideration
of effects dependent on the history of the unit such as hystersis. For thé purpose
of this trestment, all such effects will be consldered as errors or uncertainties.
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The folloving nomenclature is sugéested and will be uged i
n dis
various ccefficients defined by equation (1): S cusq;on o

o0 " blas or zero off-net

¢ " scale factor

.~ = 2nd degree non-linearity

= 3rd degree non-linearity . ’
= cross axis sensitivity

c., = 2nd degree cross axis sensitivity

= cross coupling coefficient

'In a practical accelerometer, the scale factor should be much larger than the
other coefflicients, that is

y

¢,, K¢ i
1 10 3

(o o

(2)

Cross Axis Sensitivity and Misalignment

- It can easily be shown that a non-zero value of c., is completely equivealent
to s misalignment of the "true" sensitive axis from thg% defined by the x-axis.
We ghall find an angle & defining a new set of axes x', y' such that cél in the nev
system is zero. Let x', y' be such that

' - al
ax = axcosa aysina

e (3)
ly ' &xﬁ nx + uycg;a

Then, expanding equation (1), using (3) and rearranging terms, one can determine
a new set of coefficlents cid for the series in a; and a&. In particular,

cél = c01cosa - closina

50 that {! we chouse
-1
a = tan (COl/clo) s (8)

c'. will vanish. In other words, one can always choose axes such that the cross
ag}s sensitivity will be zero. Since we assume that Co3 <€ €y the required rota-
tion of axes will ve snall and the new axes will s:ill‘%e idigtified with the intut-
tive ideans of "senzivive” and "oross® aves

It may, of course, be posoible to eluminate other coefficients by a suitacle
rotation of axes, but unlers the rotation is smald, it will grossly increase the
values of the crmull coefTicients, thus violeting the reiation (2) and thus our
{ntuitive concep: oI the "sensitive™ axic. For cxample, one cannot in general
éliminate c._ with small values of O since

is COp

02
] = e dpavn 2 f .‘M‘b‘v
Chy * CaC08 Q = €. ALUTI0SX + ¢, 8in°K Best Avat -
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degree cross axic sensitivity
term (c..), the latter of whic
risalignment.

) is of more fundamental importance then the linear

(c
. o2
h Gas no nore or less significance than a simple axis

Tests in a Constzat One Sravity Tield

In testing an accelerazeter in the grevity field of the earth, the only input
variatle is the angle O teiween the axes and the gravitly vector. E£ee Figure 1.
(Since this is & two-dimensionel anelysls, we assume that the gravity vector lies
in the x-y plane.)

y ]

o

; Figure 1

Therefore, the components of .:celeration along x and y are

a g sin ©

X
. (5)
cos
8, = 8

Data from tests is known, however, only as & function of © and not independently
as a function of a, and ay. In particular, the relaticn

2a%4+a%-= 82 (6)

is always true and hevein lies the bacic limitation of testing in a cunctent acceli-
eration field. For exemple, w2 moy now select an arbitrary constunt A' to be added
and subtracted to the right side of equation (1). By virtue of (»), we may exprecs
this constent as

. 2 2 2y
N o=he = N, "= e)
and add to equation (1) the quantity
2 2 2
)\g-)\(ax«uay)uo

Tale, however, re-ults in & new oet of coelticlients C;j whisch oo, un equally
satizfectory degerdption oI tre Ut autn, naemely, |

" e

CJJ"’CuU Xt,

"" - -

%0 % Sz0 = A (7)
v -

oz 7 % A

with ¢l) »her o -
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vhere A novw 1s arbitrary. Without additional information or sdditional assumptions,
the coefficients COQ’ c.. and Cyp CARNOL be uniquely determined by measurements in

a consa.t uccelerauionZQield. 5n purely analytical grounds, this points up the
need for precision measurements in accecleration fields other than the 1 "g" field

of the eart One possibility might be to make measuremen%s‘or the same instrument
at points on the earth's surface wlere different values of g exist. However, until
the measurement errors are reduced by at least one order of magnitude the sensitiv-
ity of this experiment would be inadequate to determine a value for A . It may be
noted that with present techniques, the coefficients c., ¢, and ¢. for the best .
acceleronelers are about the same order of magnitude a thg measu?ement uncertainty,
i.e. about 2 x 10-5g. Another suggestion is to measure the accelerometer output
in a zers gravity field, for example during the free-flight of a long range
ballistic =missile. This measurement would determine c.. directly but might be

of little value beceuse effects due to the severe envi?gnmental conditions of powered

flight. In some accelerometers, the effects of small angular velocities of the
missile would directly effect the measurement .

The Fourier Serles Representation

= £(0 ). Since the data

Data from lg tests are obtained as a set of values A
is by definition periodic in @, it is most loglcally anulyzed by“meuna of harmonic

functions, for exanple the Fourier series

Af = ao + alcoso + azcoszo + e
. + bllino + :2611120 ORI
- Z cosko «+ Zb sin kO
£o X kel X - ®)

One will »btain value. for the Fourier coefficients by a least squares fitting of
the data (#hich will include more points than the number of coefficients sought.)
The series may be cviended as far as statistically meaningful non-zero values for
the coerficients can be obtained. This condition is reached when the coet'ficients

become small compared to the rms value of the residuals

R“ = A“(Ou) - Ar(Ou).

Determination of the Power Series Coufficients

{& 4~ 4 'S
Le mentisned in the intrcdustlion, (4 iz decivable oo reprecent the goceleromotar
- 4 -
ith the power gortes expancion (1) Inctead of the Fourier seriec, and ¢

transform the Fourier coefficients into the power series
The relationship is not unique, as was implied by the above dic-

coefficients c1 '
s also evident when one obscrves that there are only (2n + 1)

cussion. This
Fourfo: caefrigients compared to (n2/2 « 3n/¢ + 1) power series coefficients. The

tscrepancy {(n€ - n)/2 1s in fact jus: eq@icd °> the number of cross coupling terrs,
.and represents the number of wdditiconul conii<iuvns necessary to determine the power
series Irom the Fourier coefficiencts. It 2o assumed he-e that all terms above the
n'th degree ure zero. '

The equ:tions (7) show, however. that there is indeterminancy only in certinin
and ¢

terms. If :ﬁe terms up to second degree are considered, c,., ¢ are
and ¢.. are not. Thus, o%g cagkot arb}%rarily r'ix

~uniquelv determined but COO’ c, o2
f?x one and unly one of the constants in the set

any constantsg; onec must
By an ex:ension of these arguments 1% can be shown that when third

(c "4 cr)q) coq)' )
dc%?ee irmaaare included, the followin. sets 0 coefficients are subject to one
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edditional coastraint egch:
)

€20’ 02

(clol clal CBO) (9)

Coy c03)

14 is the only uniquely determined ccefficient.

We can write down the equations relsting the c,, to the Fourier coeflicients
by substituting (5) into (1), evpeniing in multiple ¥ngie terws and compering term
by term with (8). The relations for series insluding only +erms of degree less
than or equal to n are as follows:

n=0 o = 8 (10)
~N
el %00 = %0
o1 T %1 ?’ (1)
0= " y
n=2 2c00+c02+c20-2a0 )
‘17 "
oz = Cap = 28, > (12)
®1n = By
1 = /
n=3 2ey * Cop t Oy = 28, A
oy T 03 T e T A
02 " 20 T %% ' > (13)
QO3 Con = ba
l‘clf) + ?”50 + c,a i“&
L%
-CjO + ey T l.bj y
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n=A4 BCOO + kcoz + hcaa + jceh + e, BCQO = Bao N
%COl + 3c03 + 8y = hal
c02 =Syt Cop - cuo = 2&2
R ha3
ok ™ S22 * Cuo = B8 $”(3&)
kclg »* 3Q3G ¥ O, = &bl
2¢y4 + €y ¥ C:g = hbz
~e3p * €15 = th
¢ " S = Oy y,

It 1s appirent that the c,,'s are uniquely defined in terms of the and bk only
for n=0and n = 1. Addiéionmi vonditions ere required to determine the coerlfi-
cients for n ® 2 as previously Indlcated. It should also be ncted that the
ambiguities in the c 4 &re ra? resolved simply by including kigher degree tevrms
from the Fourier serlés since zech higher term brings in higher order unknowi cij's‘

It may be possible, in any given situation, to set some of the c¢,, equal vo
zero based on auxiliary theoreticsl informaticn. Alternately, one muzé make arbi-
trary assumptions, seppealiny; to intultion for their Jjustification. Suppose, for
example, that one wished to cdetermine a value for c3 using a constant one gravity
test. This will require deterzining the 's and 1 Qs at least up to k = 3. We
will then require (n2 - n)/e=3 addition:} assumptlons in order to uniquely relate
the Fourier coefficients to the rower series coefficients. These exsumptions,
however, are restricted by (9). One possible set of assumpticns is

(1) ¢y, =0
(2) Cpy =0 (15)
(3) ega = ca0leq/®10)
Combining (32) and (1Y) we obtain -

~ - & + /mclo :SQ.;.‘\ ~ G P

00 J 2 \clO cCll 0 2

0 = bl + 3b3

cOl = 81 + 333

e E R T - (1)

) = ool (—*«-*3;9—*\ Y owln .

- “\S T cOl) -

c., = ~ia ( T Y -ia, (e )

dE c\%y " Col AR ) B

cj‘(.) = -htls

¢ = wen

(W] > J

———— e —a b—— e - = o = et
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Conclusion

It has been shown that testing accelercmeters in a constant cae gravity field
has certein basic limitations asssciated with the fact that the acceleration com-
ponents &, and ay are related by

a 2 + 8 2. gz.

x Y
This makes it impossible to uniquely determine the coefficients of a power series
expansion for the accelerometer performance (equetion 1) from the results of a
constent gravity test alone. The ambiguity cannot be resolved by higher precision
tests but requires instzad, tests under an acceleration field of different magnitude. .
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